Distributed computation of fast consensus weights using ADMM
نویسندگان
چکیده
In time-critical multi-agent tasks, it is important for the agents to reach consensus as fast possible. this paper, we consider problem of computing weights in weighted-average protocol that achieve average with an optimal per-step convergence factor. Most work literature either computes these set a centralized manner, which requires global information about network may not be available, or suboptimal weights, are slow achieving consensus. We propose iterative, distributed algorithm compute give theoretical guarantees algorithm. Through numerical examples, show our method performs better than other methods consensus, and matches performance method.
منابع مشابه
Adaptive Consensus ADMM for Distributed Optimization
The alternating direction method of multipliers (ADMM) is commonly used for distributed model fitting problems, but its performance and reliability depend strongly on userdefined penalty parameters. We study distributed ADMM methods that boost performance by using different fine-tuned algorithm parameters on each worker node. We present a O(1/k) convergence rate for adaptive ADMM methods with n...
متن کاملAsynchronous Distributed ADMM for Consensus Optimization
Distributed optimization algorithms are highly attractive for solving big data problems. In particular, many machine learning problems can be formulated as the global consensus optimization problem, which can then be solved in a distributed manner by the alternating direction method of multipliers (ADMM) algorithm. However, this suffers from the straggler problem as its updates have to be synch...
متن کاملFast Distributed PageRank Computation
Over the last decade, PageRank has gained importance in a wide range of applications and domains, ever since it first proved to be effective in determining node importance in large graphs (and was a pioneering idea behind Google’s search engine). In distributed computing alone, PageRank vectors, or more generally random walk based quantities have been used for several different applications ran...
متن کاملLocation-Aided Fast Distributed Consensus
Existing works on distributed averaging explore linear iterations based on reversible Markov chains. The convergence of such algorithms is bounded to be slow due to the diffusive behavior of the reversible chains. It has been observed that by overcoming the diffusive behavior, certain nonreversible chains lifted from reversible ones mix substantially faster than the original chains [1], [2]. In...
متن کاملFast ADMM Algorithm for Distributed Optimization with Adaptive Penalty
We propose new methods to speed up convergence of the Alternating Direction Method of Multipliers (ADMM), a common optimization tool in the context of large scale and distributed learning. The proposed method accelerates the speed of convergence by automatically deciding the constraint penalty needed for parameter consensus in each iteration. In addition, we also propose an extension of the met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2022
ISSN: ['1873-2836', '0005-1098']
DOI: https://doi.org/10.1016/j.automatica.2022.110322